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Abstract

Halide is a domain-specific language for building and optimizing numerical pipelines for applications in
image processing, neural networks, and linear algebra. Its distinctive separation of what to compute — the
algorithm — from the organization of that computation — the schedule — enables programmers to focus
on the optimization of their programs without reasoning about loop index edge cases, concurrency issues,
or portability. Halide then ensures memory safety through a bounds inference engine that determines safe
sizes for every buffer in the generated code.

In this paper, we present the Halide language in a formal setting, provide semantics for every part
and proofs of correctness for the scheduling directives, and define the bounds inference problem in terms
of program synthesis. We believe this precision will bolster future work in extending Halide to support a
broader computational model, assist validating the implementation against a formal specification, and
inspire the design of new languages and tools that apply programmer-controlled scheduling to other
domains.

1 Introduction

Halide is a domain-specific language for building and optimizing dense array processing pipelines for applica-
tions like image processing, machine learning, and linear algebra [30]. Its design separates the specification
of what is to be computed, known as the algorithm, from the specification of the order in which those
computations should be carried out and placed in memory, known as the schedule, both of which are supplied
by the user. Halide popularized this design, which is now being explored in a new generation of languages
and compilers [10, 38, 29, 43, 2, 36, 25, 39, 3]. Halide is also being used widely in industry, from YouTube, to
every Android phone, to Adobe Photoshop [31, 21, 33].

This design makes a fundamental safety and correctness promise: the algorithm serves as a ground
truth for what the overall program is meant to compute, so the scheduling directives must not alter the
outputs for any set of inputs. The key power of these languages is that programmers are thus relieved from
troubleshooting large classes of bugs that arise when optimizing loops for memory locality, vectorization, or
multi-core parallelism because these transformations are available in the scheduling language. This enables a
schedule-centric workflow where the majority of effort is spent exploring different optimizations, not ensuring
correctness after each attempted one. The safety and correctness of languages with user-controlled scheduling,
however, has never been formally defined or analyzed. This paper presents the first formal definition and
analysis of the core of Halide.

Formalizing Halide presents several challenges. First, it is not obvious how to formulate a metatheory: what
should be true about such a language, and how should it be formally structured? Second, this formalization
is complicated by trying to retain fidelity to the practical system. As an industrial system required to
replace hand-optimized assembly, on esoteric accelerator architectures, in performance-critical production
applications, Halide is unsurprisingly more complex than many academically-motivated array languages.

An unusual characteristic of the Halide language is its combination of lazy and eager semantics. The
algorithm language is fundamentally lazy, defining a dataflow graph on infinite arrays. The core job of
schedules is to prescribe particular eager, imperative implementations of these lazy, functional algorithms: a
scheduled program yields a specific loop nest and buffer allocation that computes subarrays of each stage
to produce the desired region of the output. Schedules include classic loop transformations, but their most
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unique constructs (compute-at, store-at) specify the granularity of producer-consumer communication in a
lazy computation graph. Then, to relieve the burden on the programmer of determining safe and correct
extents for all of the resulting loops and intermediate buffer allocations given a schedule, Halide relies on
automatic bounds inference. The complex interaction of all of these features has made changing the language
and compiler very difficult in practice, which is a core motivation for our formalization.

This paper makes the following contributions:

• We give the first complete semantics and meta-theory for user-specified scheduling of a high performance
array processing language.

• We give the first precise description of the core of the practical Halide system: the algorithm language,
scheduling operators, and bounds inference problem.

• We define Halide’s bounds inference problem in terms of program synthesis.

• We prove that Halide programs are memory safe.

• We prove that scheduling does not change the output of a Halide program, provided bounds assertions
pass.

• We find and fix bugs in, and make design improvements to, the practical Halide system.

2 An Example Halide Program

To introduce key concepts and build intuition for the formalism to follow, let’s start with an example. Consider
a separable two-stage blur algorithm (a pipeline), as shown in Figure 1 (a). Blurring algorithms work by
taking a weighted average of the values in a window around each pixel. A separable blur can be factored
into horizontal and vertical stages. For this example, we make the blur window size w a pipeline parameter.
Despite the apparent simplicity of this algorithm, a straightforward C implementation is many times slower
than even a moderately optimized version [30].

The algorithm uses three funcs, introduced by fun: f modeling the input image, g the image after
horizontal blurring, and h the image after vertical blurring. Unlike most array languages, Halide treats these
funcs as partial functions defined on an unbounded n-dimensional integer lattice, rather than simply arrays.
The last func h defines the pipeline output, which—by prohibiting recursion—is defined by acyclic dependence
on other funcs. For simplicity of formalization, we omit treatment of special input funcs, using procedural
inputs such as the sinusoid pattern sin(x+ y). The practical system supports pipeline input images.1

Funcs may be defined as pure functions (e.g., f) or via imperative updates (e.g., g and h). Regardless,
all funcs must begin with a pure definition to ensure they are defined over the entire domain. (f is defined
as a 2D sinusoid, while g and h are initialized to 0.) After this, a func may optionally include one or more
update stages that modify this initial definition. These update stages may use reduction domains (rdoms),
which may be read as for-loops over a (base, extent) interval. g and h use this feature to implement a sum (a
reduction) over the blur window, which is the interval (−w, 2w + 1). Finally, to evaluate a pipeline P , we
must supply parameters (w) and a realization window, e.g. ((0, 640), (0, 480)). Every pixel in this range of
the output is then computed.

Infinite data-structures like funcs can be handled with lazy, functional evaluation, but then how are
eager, imperative rdoms integrated? In Section 4, we show how to resolve this issue with a lazy, big-step
reference semantics for the algorithm language. These semantics have no knowledge of memory, bounds, or
computation order.

In order to recover an eager, imperative implementation, we lower the pipeline into a second, imperative,
target language with C-like semantics. While there exist sensible choices for loop iteration bounds and buffer
sizes, our blur algorithm never specified these. Therefore, this initial lowered program leaves symbolic holes
in the code (written ‘?’). Figure 1 (c) shows the lowered pipeline.

1The bounds of the images must be checked for consistency with the downstream program. This check happens as soon as
the program starts running.
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pipelineP (w)

fun f(x, y) = sin(x + y)

fun g(x, y) = {0;
rdom (r = (−w, 2w + 1))

in (x, y)← g(x, y) + f(x + r, y); }
funh(x, y) = {0;

rdom (r = (−w, 2w + 1))

in (x, y)← h(x, y) + g(x, y + r); }

(a) Two-stage blur algorithm with parameterized box size.

split(〈h, z0, s1, x〉, xo, xi, 256);

split(〈h, z0, s1, y〉, yo, yi, 32);

swap(〈h, z0, s1, yi〉);
traverse(〈h, z0, s1, yo〉,parallel);
compute-at(g, 〈h, z0, s1, xo〉);
store-at(g, 〈h, z0, s1, xo〉)

(b) Two-stage blur schedule.

pipelineP (w)((bx, lx), (by, ly))

allocate 〈f〉(?0, ?1);
label f :

label s0 : for y in (?2, ?3)do for x in (?4, ?5)do

f [x, y]← sin(x + y)

allocate 〈g〉(?6, ?7);
label g :

label s0 : for y in (?8, ?9)do for x in (?10, ?11)do

g[x, y]← 0

label s1 : for y in (?12, ?13)do for x in (?14, ?15)do

for r in (−w, 2w + 1)do

g[x, y]← g[x, y] + f [x + r, y]

allocate 〈h〉(?16, ?17);
labelh :

label s0 : for y in (?18, ?19)do for x in (?20, ?21)do

g[x, y]← 0

label s1 : for y in (?22, ?23)do for x in (?24, ?25)do

for r in (−w, 2w + 1)do

h[x, y]← h[x, y] + g[x, y + r]

(c) Initial lowering of two-stage blur.

pipelineP
′
(w)((bx, lx), (by, ly))

allocate 〈f〉 ((bx − w, lx + 2w), (by − w, ly + 2w)) ;

for y in (by − w, ly + 2w)do for x in (bx − w, lx + 2w)do

f [x, y]← sin(x + y)

allocate 〈h〉((bx, lx), (by, ly));
for y in (by, ly)do for x in (bx, lx)doh[x, y]← 0

for
parallel

yo in (0, ly/32)do for xo in (0, lx/256)do

allocate 〈g〉((by + 32yo − w, 32 + 2w), (bx + 256xo, 256));

for y in (by + 32yo − w, 32 + 2w)do for x in (bx + 256xo, 256)do

g[x, y]← 0

for y in (by + 32yo − w, 32 + 2w)do for x in (bx + 256xo, 256)do

for r in (−w, 2w + 1)do

g[x, y]← g[x, y] + f [x + r, y]

for yi in (0, 32)do for xi in (0, 256)do

for r in (−w, 2w + 1)do

let y = by + 32yo + yi in

if y < by + ly in

let x = bx + 256xo + xi in

if x < bx + lx in

h[x, y]← h[x, y] + g[x, y + r]

(d) Final scheduled two-stage blur with inferred bounds.

Figure 1: Top: Example algorithm and schedule. Bottom: Lowered target before and after scheduling and
bounds inference.

labelh :

· · ·
label s1 :

for yo in (0, ?23/32)do for yi in (0, 32)do

forxo in (0, ?25/256)do forxi in (0, 256)do

for r in (−w, 2w + 1)do

letx =?24 + 256xo + xi in

let y =?22 + 32yo + yi in

if y <?22+?23 then

if x <?24+?25 then

h[x, y]← h[x, y] + g[x, y + r]

Figure 2: h’s update stage partway through scheduling.
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To fill these holes, Halide uses a process called bounds inference, which we formalize as a program synthesis
problem.2 For our purposes, we assume a bounds inference oracle returns satisfying expressions to fill every
hole, without any particular guarantee on the tightness of these results (it is always safe to allocate and
compute more than is necessary). While the practical system also provides no hard guarantees, it works well
enough to produce high quality code for industrial use on broad classes of programs.

The result of bounds inference is an executable program in the target language, with guaranteed memory
safety and correctness with respect to the original algorithm.

However, the initial lowering is not especially efficient. Every stage of every func is computed in its own
loop nest, with all rdoms translated to innermost loops. This default schedule is only one such valid schedule,
albeit with poor locality and excessive memory use.

A faster schedule is specified in Figure 1 (b) using a programmer-visible language of scheduling directives.
This schedule breaks the computation of h into tiles of size 256× 32 (split, split, swap). Each column of
tiles is computed in parallel, independently of every other column (traverse). Rather than compute and
store all of g before proceeding to h, this schedule computes g per-tile (compute-at, store-at). At the cost
of a small amount of redundant recomputation, this schedule increases locality dramatically.

In this formalization, each scheduling directive may be viewed as an individual, primitive program
transformation, through which correctness and safety are preserved. For instance, Figure 2 shows the program
after both split transformations, but before swap. As such, each modified program with holes can be
completed via bounds inference into a hole-free target program.

Halide ensures safety by constraining the space of valid program transformations. For instance, only
loops tied to pure variables (e.g. x, y) rather than reduction variables (e.g. r) may be split, swapped, or
traversed in parallel.

With the blur pipeline, we can clearly see the benefits of decoupled scheduling. In a traditional high
performance language like C, a programmer would need to write code similar to the generated code in
Figure 1 (d). By instead factoring these scheduling strategies into a small language of directives, Halide
programmers are able to explore the space of safe, equivalent programs. The formalism presented here
explains how and why these guarantees are achieved.

3 Overview

3.1 Formal system structure

Halide programs are defined by an algorithm and schedule pair, each written in two related languages, denoted
P ∈ Alg and T ∈ Sched. The syntax and semantics for Alg (§4) are not meant to suggest a practical
implementation, but instead serve as a reference meaning for an unscheduled program.

Before execution, a program P is lowered to a program in an imperative intermediate language, Tgt (§5).
This language has a variant with labeled holes allowed in place of expressions, denoted Tgt?. The function
for lowering P to such a program is denoted L : Alg→ Tgt? (§6).

If an empty schedule is provided, then S0 = L(P ) is passed to a bounds inference oracle (§7) which returns
some program P ′ ∈ BI(S0) ⊆ Tgt. The programs produced by the oracle are identical in structure to the
original, but have had their holes filled by expressions that will allow the program to run and produce correct
results without memory errors.

If a non-empty schedule with directives s1; · · · ; sn is provided, we define a corresponding sequence of
programs (§8) with holes Si ∈ Tgt? by S0 = L(P ), Si = S(si, Si−1). Here, the function S : Sched×Tgt? →
Tgt? applies a scheduling directive si to a program Si and returns the result. Each of these programs may
be further elaborated to a hole-free program P ′i ∈ BI(Si). Some final program P ′ = P ′n is the overall result
of compilation. Figure 3 illustrates the high level structure of this formal system.

3.2 Metatheory

Before getting into the details of the formalism, we will review our main theoretical goals. Halide makes two
fundamental promises to programmers: memory safety and equivalence under scheduling transformations.

2The practical system conservatively infers bounds with interval arithmetic.
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P ∈ Alg

S0 ∈ Tgt? S1 ∈ Tgt? Sn ∈ Tgt?

P ′0 ∈ BI(S0) ⊆ Tgt P ′1 ∈ BI(S1) P ′n ∈ BI(Sn)

L

BI

S(s1,−)

BI

S(si,−)

BI

Figure 3: Diagram of the formal system and its parts

Definition 3.1 (Input). Let P be a pipeline with m parameters and an n dimensional output func. Then an
input z to P is an assignment to those m parameters and an assignment of n constant intervals defining a
realization window R(z).

Programs produced by bounds inference are allowed to compute a larger window than was requested by
the input. This is possible, for instance, when the output func contains an RDom that is not contained by
the realization. Two pipelines are considered equivalent as long as they agree on the requested window.

Definition 3.2 (Output equivalence). Let each of P and P ′ be either an algorithm or target language
program, with identical output dimension and parameters. They are said to have equivalent outputs for
input z if for every point x ∈ R(z), the partial functions f returned by P (z) and f ′ returned by P ′(z) have
f(x) = f ′(x). When this is the case, we write P 'z P

′.

Definition 3.3 (Algorithm confluence). Let P ∈ Alg be some Halide algorithm and let S ∈ Tgt? be some
target language program with holes. We say that S is confluent with P if for all P ′ ∈ BI(S) and all inputs z,
either P (z) contains an error value in R(z), P ′(z) contains an error in R(z), P ′(z) fails an assertion check,
or P ′ 'z P .

Error values and assertion failures are detailed in Sections 4.1 and 5.2 respectively. We are now able to
state the two fundamental theorems about Halide. In stating these theorems, we assume that algorithm
language programs are valid (§4.3), as are schedules (§8).

Theorem 3.4 (Memory safety). Let P ∈ Alg be a valid program, z input parameters to P , and T a valid
schedule for the program P . Then, for all target language programs P ′ ∈ BI(S(T,L(P ))), P ′(z) will not
access any out of bounds memory.

Theorem 3.5 (Scheduling equivalence). Let P ∈ Alg be a valid program, z input parameters to P , and T a
valid schedule for the program P . Then all target language programs P ′ ∈ BI(S(T,L(P ))) are confluent with
P .

Memory safety will be guaranteed by the bounds inference oracle. The problem posed to this oracle is
defined in Section 7 such that this property is correct by construction.

4 Algorithm Language

4.1 Expressions

Figure 4 shows the abstract syntax of the expression language. The set of values V in the formal language
extends Z, on which the usual primitive expressions are defined3:

V = Z ∪ {εarith, εrdom, εmem}

Definition 4.1 (Error value). The special expression values εarith < εrdom < εmem encode a hierarchy of
errors. Any operation in the expression language involving one or more of these values evaluates to the
greatest among them.

3The practical system supports floating-point and fixed-width integers, and faces standard semantic issues with those.
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c ::= i ∈ V constants
a ::= f [e1, . . . , en] func access
e ::= c | a | v | op(e1, . . . , ek) expression
I ::= (emin, elen) interval

v ::= x pure variable
| r reduction variable
| p parameter variable

op ::= + | − | × | div | mod arithmetic
| ∨ | ∧ | ¬ | < | > | = logical
| select | min | max conditional

Figure 4: Halide expression syntax

R ::= rdom(r1 = I1; · · · ; rn = In) rdom
U0 ::= e pure stage
U ::= R in (e1, . . . , en)← e if eP update stage
B ::= U0 | B;U func body
F ::= fun f(x1, . . . , xn) = {B} func
D ::= F | D;F definitions
P ::= pipeline(p1, . . . , pm) = D pipeline

Z ::= P (z) realization
z ::= 〈(I1, . . . , In), (c1, . . . , cm)〉 input

Figure 5: Halide algorithm syntax

The expression language on its own can only produce errors of kind εarith (e.g. division by zero). εrdom
captures errors preventing ordinary execution of rdoms (§4.4). Lastly, εmem are memory errors, which do not
occur in the algorithm semantics. They are only possible in the target language (§5.2), but are prohibited by
theorem 3.4.

4.2 Algorithm Syntax

Our formalization of Halide (syntax in Figure 5) focuses on the fundamental issues at play: pure definitions,
separable updates, and imperative updates. Along with pointwise evaluation, these are the primary constructs
that govern the structure of computation.

4.3 Algorithm validity rules

Halide algorithms must adhere to several non-standard restrictions. This first rule constrains the use of pure
variables to facilitate flexible scheduling decisions.

Definition 4.2 (Syntactic separation restriction). Let f be a func given by fun f(x1, . . . , xn) = {U0; · · · ;Um}.
The syntactic separation restriction states that for all pure vars xi and all stages Uj , if xi occurs anywhere in
Uj then all accesses in Uj of the form f [e1, . . . , en] must have ei ≡ xi.

This rule is so subtle that the authors often misstate it, yet it is critical to the correctness of many
scheduling directives and metatheory claims, so we show a few examples.

It might be tempting to write an in-place shift using the following func definition:

fun f(x) = {g(x); (x)← f(x+ 1)}

But such an update diverges on f ’s unbounded domain since f(0) would need to first compute f(1), which
would need to compute f(2) and so on. Thus such updates are disallowed by 4.2. It is also disallowed to use
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the variable in some places, but not others, as in:

fun f(x) = {g(x); rdom(r = (0, 3)) in (x)← f(x) + f(r)}

The reason here is that, viewed as an in-place update to the values of f , the update cannot be applied
uniformly across the entire dimension x. On the other hand, a definition like

fun f(x) = {0; rdom(r = (0, 3)) in (x)← f(x) + g(x) + g(r)}

is perfectly legal since the restriction only applies to the func whose update stage is being defined. At this
point in the algorithm, all of g’s values are known, so there is no hazard. The intuition for this rule is that
updates that reference pure variables should augment the previous stage in a mathematically coherent way.

The syntactic separation restriction extends the notion of purity to stage dimensions, which need not
reference all of the func’s pure variables.

Definition 4.3 (Pure/reduction dimensions). For any pure variable xi and stage Uj, it is said that i is a
pure dimension in stage j if xi appears in Uj . Dimensions which are not pure are called reduction dimensions.

Certain expressions in Halide are not allowed to refer to variables in order to keep scheduling flexible and
sound. Such expressions are called startup expressions to reflect the fact that they are constant from the
point of view of any func in the program.

Definition 4.4 (Startup expression). In a given pipeline P with parameters p1, . . . , pn, an expression e is a
startup expression iff e contains no func references and any variable v occurring in e is identically one of pi
for some i.

Finally, we can give the definition of program validity.

Definition 4.5 (Valid program). A program P ∈ Alg is valid if the bounds of all rdoms are startup
expressions, the names of all funcs are unique, the names of all pure variables within each func are unique,
and the names of reduction variables within a single stage are unique. The first stage of every func may
not include a self-reference. All stages must obey definition 4.2. Lastly, common type checking rules for
expressions (eg. function arity matching) must be respected.

4.4 Algorithm Semantics

The purpose of a Halide algorithm is to define the value of every point in every func (Figure 6). Evaluation
proceeds pointwise with no need to track bounds. Funcs are evaluated by substitution (Func-Eval) as standard
for function calls. Compared to the target language, whxich precomputes values of Funcs as if they are arrays,
this evaluation-by-substitution is lazy.

While this laziness lets us avoid reasoning about bounds, it makes the semantics of the comparitively
eager Rdom construct more complicated. How do we update a seemingly pure Func? To resolve this tension
we simply unroll Rdoms (RDom-Eval) into sequences of point updates when and as they are encountered.

These simple updates can then be thought of as shadowing the previous func definition, similar to the
functional definition of stores used by most operational semantics for imperative languages (Update-Eval). If
the lookup point and update point coincide, then the update rule is substituted, otherwise the existing value
is used.

Lastly, we state that all algorithms terminate.

Lemma 4.6 (Algorithms terminate). Given any algorithm P ∈ Alg and input z, the output of P (z) can be
determined in a finite amount of time.

This follows the intuition that Halide pipelines are defining mathematical objects by supplying formulas
to compute the values.

Proof. Since rdom extents are startup expressions and no infinity value exists in the expression language,
there is no way to loop infinitely. Halide does not have any facility for recursion, and so is not Turing-complete.
These facts together ensure termination.
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D = · · · ; fun f(x1, . . . , xn) = B

~i ∈ I1 × · · · × In
[c1/p1, . . . , cm/pm]D; f(~i) ⇓ c~i

[Realize]
(pipeline(p1, . . . , pm) = D)(〈(I1, . . . , In), (c1, . . . , cm)〉) ⇓ g(~x) := c~x

[Const-Eval]
D; c ⇓ c

D; e1 ⇓ c1 D; e2 ⇓ c2 D; e3 ⇓ c3 D;op(c1, c2, c3) ⇓ c′
[Op-Eval]

D;op(e1, e2, e3) ⇓ c′

D; e1 ⇓ c1 · · · D; en ⇓ cn D; f [c1, . . . , cn] ⇓ c′
[Func-Arg-Eval]

D; f [e1, . . . , en] ⇓ c′

f 6= g D; f [~c] ⇓ c′
[Func-Passthrough]

D; fun g[~x] = {B}; f [~c] ⇓ c′
D; [c1/x1, . . . , cn/xn]e ⇓ c′

[Func-Eval]
D; fun f [x1, . . . , xn] = {e}; f [c1, . . . , cn] ⇓ c′

D; fun f [~x] = {U0; · · · ;Um−1}; [~c1/~x1, . . . , ~cn/~xn] (select(e1 = ~x1 ∧ · · · ∧ en = ~xn ∧ ep, eb, f [~x])) ⇓ c′
[Update-Eval]

D; fun f [~x] = {U0; · · · ;Um−1; rdom() in (e1, . . . , en)← eb if ep}; f(~c) ⇓ c′

∀j : Ij =
〈
emin
j , elenj

〉
emin
j ⇓ cmin

j elenj ⇓ clenj ∃j.cmin
j = ε ∨ clenj = ε ∨ clenj < 0

[RDom-Err]
D; fun f(~x) = {· · · ; rdom(r1 = I1, . . . , rk = Ik) in · · · }; f(~c) ⇓ εrdom

∀j : Ij =
〈
emin
j , elenj

〉
emin
j ⇓ cmin

j elenj ⇓ clenj D; fun f(~x) = {U0; · · · ;Um−1; unroll}; f(~c) ⇓ c′
[RDom-Eval]

D; fun f(~x) = {U0; · · · ;Um−1; rdom(r1 = I1, . . . , rk = Ik) in (e1, . . . , en)← eb if ep}; f(~c) ⇓ c′

where

unroll =
([
cmin
k /rk

]
(rdom(r1 = I1, . . . , rk−1 = Ik−1) in (e1, . . . , en)← eb if ep) ; · · ·

[(
cmin
k + clenk − 1

)
/rk
]

(· · · )
)

Figure 6: Algorithm language natural semantics

5 Target Language

In this section, we describe the target language (IR) to which the base Halide algorithm compiles. Programs
in this language have a defined execution order (which is modified by the schedule) and is similar to classic
imperative languages. It uses the same expression language as the algorithm language and has the same
semantics for all expressions, save func accesses, which become references to memory.

5.1 Syntax

Figure 7 presents the abstract syntax for the Halide IR. This language comes in two variants: with holes
(Tgt?) and without holes (Tgt). The lowering algorithm given in Section 6 introduces holes that will later
be filled by bounds inference which is described in Section 7. The main difference between this language and
similar imperative languages is that loops are restricted to range-based for loops which can be marked for
parallel traversal. The statements label and compute have no actual run time behavior, but are instead
used as handles by scheduling and bounds inference.

5.2 Semantics

In Figure 8 we give small-step semantics for the target imperative language. Note that Σ is an environment
for loop variables and let bindings and σ is the store or heap in which memory is allocated.

The first major difference is that for loops are given as ranges, with a minimum and a length. If the length
is negative, or either is an error expression (only εarith is possible), then the program steps immediately to a
special error state.

Second, note that the Alloc rule updates the store σ with a mapping from the symbolic name of the func
to a pair of (1) a partial function f̂ (initially arbitrary) that records the values and (2) the bounds that were
stated at allocation time. The notation Ik is shorthand for (cmin

k , clenk ).
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τ ::= serial | parallel execution order
s ::= nop no operation

| assert e assertion
| s1 ; s2 sequencing
| allocate 〈f〉(I1, . . . , In) allocate buffer
| a← e update buffer
| if e1 then s1 else s2 branching
| forτ x in I do s bounded loops
| letx = e in s let binding
| compute f on (I1, . . . , In) : s compute label
| label ` : s statement label

P ::= pipeline(p1, . . . , pn) : s pipeline

e ::= . . . | ? Tgt? expr

Figure 7: Halide IR syntax. Expressions are the same as before (Figure 4), but are augmented with holes for
Tgt?.

The next two rules define assigning to a point in a func in the store and reading from a func in the
store. Assignment is modeled by shadowing the old value, ie. by redefining the mapping of f in σ to a new
partial function f̂ ′ which agrees with f̂ everywhere except at the point being updated. Reading is simply a
matter of evaluating the stored function. The predicate InBounds(f [~c], σ) checks the fully evaluated point
~c ≡ (c1, . . . , cn) against the bounds stored in σ(f).

Note that writing out of bounds stores εmem everywhere in the buffer, thereby invalidating it. Recall that
theorem 3.4 states that neither will ever occur in target language programs that were produced by running
bounds inference on a lowered and scheduled algorithm.

6 Lowering

Halide algorithms are compiled to target language programs with holes by the lowering function L. This
function is defined in Figure 9. The lowering function creates a top-level 4 compute statement for every
func in the program. In that compute statement are a sequence of nested loops surrounding assignments
implementing the formula for each stage in the algorithm. Pure dimensions which do not appear in a stage
are not lowered to loops, and reduction domains appear as innermost loops.

The lowering function also introduces labels for each func and stage that can be later used for scheduling.
In our treatment, labels are arbitrary, uninterpreted symbols. We use the names of the funcs and number the
stages here. The scheduling directives identify loops via the following scheme.

Lemma 6.1 (Loop naming). Given a valid algorithm P ∈ Alg and a valid schedule T ∈ Sched, any for
loop in S(T,L(P )) is uniquely identified by (1) the func, (2) the specialization (or lack thereof), and (3) the
stage to which it belongs, as well as (4) the name of its induction variable.

Proof. Just after lowering, this is true by construction. Each scheduling directive will preserve this invariant.

Specializations do not exist in initially lowered programs, but can be introduced by scheduling (see §8.1).
If a func is not specialized, that data can be regarded as 0. The loop naming lemma lets us talk about the
loops for a given stage, or for a given loop, the stage, specialization, and func to which it belongs.

Lemma 6.2 (Dominance). Given a valid algorithm P ∈ Alg and a valid schedule T ∈ Sched, the program
P ′ = S(T,L(P )) has the following property. If a func g statically depends on another func f , then the
compute statement for f dominates the compute statement for g. Furthermore, the allocate statement
for any func f dominates the compute statement for f .

4In the practical system, all funcs are inlined into their consumers by default, but for the sake of formal reasoning, we take
the opposite convention.
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E ::= �
| E; s
| allocate 〈f〉((cmin

1 , cn1 ), . . . , E, . . . , bn)
| a← E | E ← c
| if E then s1 else s2
| for` x inE do s
| letx = E in s
| f [c1, . . . , E, . . . , en]
| 〈op〉(c1, . . . , E, . . . , ek)
| (E, en) | (cmin, E)

〈b | Σ | σ〉 → 〈b′ | Σ′ | σ′〉
[Bounds-Eval]〈

s; f(b1, . . . , b, . . . , bn)
∣∣∣ Σ

∣∣∣ σ〉→ 〈
s; f(b1, . . . , b′, . . . , bn)

∣∣∣ Σ′
∣∣∣ σ′〉

Σ = {} Σ′ = Σ[(f.mini, f .ni) = bi] σ′ = σ
[
f →

〈
∅, (b1, . . . , bn)

〉]
[Bounds-Decl]〈

s; f(b1, . . . , bn)
∣∣∣ Σ

∣∣∣ σ〉→ 〈
s; f(b1, . . . , bn)

∣∣∣ Σ′
∣∣∣ σ′〉

〈s | Σ | σ〉 → 〈s′ | Σ′ | σ′〉
[Realize]〈

s; f(b1, . . . , bn)
∣∣∣ Σ

∣∣∣ σ〉→ 〈
s′; f(b1, . . . , bn)

∣∣∣ Σ′
∣∣∣ σ′〉

σ(f) =
〈
f̂ , . . .

〉
[End]

〈nop; f(b1, . . . , bn) | Σ | σ〉 →
〈
f̂
∣∣∣ Σ

∣∣∣ σ〉

〈s | Σ | σ〉 → 〈s′ | Σ′ | σ′〉
[Reduce]

〈E[s] | Σ | σ〉 → 〈E[s′] | Σ′ | σ′〉
[Nop]

〈nop; s | Σ | σ〉 → 〈s | Σ | σ〉

[If-T]
〈if true then s1 else s2 | Σ | σ〉 → 〈s1 | Σ | σ〉

[If-F]
〈if false then s1 else s2 | Σ | σ〉 → 〈s2 | Σ | σ〉

[For-Stop]〈
forx in (cmin, 0)do s

∣∣ Σ
∣∣ σ〉→ 〈nop | Σ \{x} | σ〉

cn > 0
[For-Iter]〈

forx in (cmin, cn)do s
∣∣ Σ

∣∣ σ〉→ 〈
s; forx in (cmin + 1, cn − 1)do s

∣∣ Σ[x = cmin]
∣∣ σ〉

InBounds(f [c1, . . . , cn], σ) σ′ = σ[f(c1, . . . , cn) = c]
[Assn]

〈f [c1, . . . , cn]← c | Σ | σ〉 → 〈nop | Σ | σ′〉

σ′ = σ
[
f →

〈
∅, (b1, . . . , bn)

〉]
[Alloc]〈

allocate 〈f〉(b1, . . . , bn)
∣∣∣ Σ

∣∣∣ σ〉→ 〈nop | Σ | σ′〉
v = Σ(x)

[Var]
〈x | Σ | σ〉 → 〈v | Σ | σ〉

InBounds(f [c1, . . . , cn], σ) σ(f [c1, . . . , cn]) = c
[Read]

〈f [c1, . . . , cn] | Σ | σ〉 → 〈c | Σ | σ〉

〈op〉(c1, . . . , cn) = c 〈op〉 ∈ {select,+,−, . . .}
[Eval]

〈〈op〉(c1, . . . , cn) | Σ | σ〉 → 〈c | Σ | σ〉

Figure 8: IR structural semantics
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L(pipelineP (p1, . . . , pn) : F1; · · · ;Fm) = pipelineP (p1, . . . , pn) : LF (F1); · · · ;LF (Fm)

LF (fun f(x1, . . . , xn) = B) =


allocate f(?min

x1
, ?lenx1 , . . . , ?

min
xn , ?lenxn )

label f :

compute f on(?min
x1

, ?lenx1 , . . . , ?
min
xn

, ?lenxn ) :

LB(f, (x1, . . . , xn), B)

LB(f, (x1, . . . , xn), U0; · · · ;Um) =


label s0 : LU (f, (x1, . . . , xn), 0, U0)

...

label sm : LU (f, (x1, . . . , xn),m, Um)

LU (f, ~x, i, R in (e1, . . . , en) = e if eP ) =

{
LP (f, ~x, (e1, . . . , en),

LR(R, if eP then f [e1, . . . , en]← e))

LR(rdom(), s) = s

LR(rdom(r1 = I1, . . . , rn = In), s) = LR(rdom(r2 = I2, . . . , rn = In), for r1 in I1 do s)

LP (f, (), (), i, s) = s

LP (f, (x1, . . . , xn), (e1, . . . , en), i, s) =

LP
(

f, (x2, . . . , xn), (e2, . . . , en), i,

forx1 in (?min
f,0,i,x1

, . . .?lenf,0,i,xn )do s

)
if x1 ≡ e1

LP (f, (x2, . . . , xn), (e2, . . . , en), i, s) otherwise

Figure 9: Lowering Halide algorithm to IR with default eager schedule.

Proof. Just after lowering, this is true by construction. Each scheduling directive will preserve this invariant.

Lowering introduces a set of bounds holes to be filled by the bounds inference oracle described in Section 7.
Bounds holes are indexable by the following data.

Definition 6.3 (Bounds hole). A bounds hole is an entity in the expression language of Tgt? that stands in
for a hole-free expression. A bounds hole contains the following data:

1. Whether it is an allocation hole (mem), a compute hole (cpu), or a loop hole (for).

2. Whether it represents a minimum (min) of an interval, or the length (len).

3. If it is an allocation or compute hole, to which func and dimension it belongs.

4. If it is a loop hole, the name of the loop to which it belongs.

Across specializations, the last stage is defined to share a common bounds hole. Those holes may be specified
by only the cpu label; min or length; func; and dimension.

7 Bounds Inference

In previous work on Halide, bounds inference is discussed in terms of an algorithm used to fill the holes
introduced by lowering. This algorithm works by propagating symbolic intervals backwards through the
dataflow. Improvements to the compiler regularly change the results of this algorithm, resulting in an unstable
definition in practice.

In order to abstract over these changing bounds inference algorithms, we pose bounds inference as a
synthesis problem via an oracle query. While the resulting satisfiability problem is undecidable, this definition
provides previously underformulated soundness conditions for any bounds inference algorithm.

Recall from definition 6.3 that there are three types of bounds in Halide. These are the allocation bounds,
the loop bounds, and the compute bounds.
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B(pipeline(~p) : s) = ∀pk.B(s)

B(nop) = true

B(label ` : s) = B(s)

B(s1; s2) = B(s1) ∧ B(s2)

B(let v = e in s) = (B(s))[e/v]

B(if e then s1 else s2) = (e =⇒ B(s1)) ∧ (e =⇒ B(s2))

B(for v in I do s) = ∀v ∈ I.B(s)

B(assert e) = e

B(allocate f(. . .)) = ∀i.Cpu(f)i ⊆Mem(f)i

B(compute f on (. . .) : s)
= (∀i, j, k.Cpu(f)k ⊆ Loop(f, i, j)k) ∧ B(s)

B (f [e1, . . . , en]← . . . g[e′1, . . . , e
′
m] . . .)

= ei ∈Mem(f)i ∧ e′i ∈Mem(g)i
∧ei ∈ Cpu(f)i =⇒ e′i ∈ Cpu(g)i)

Figure 10: Bounds oracle query extraction

The compute bounds define regions over which the points in the buffer must have values that agree with
those defined by the original algorithm. The allocation bounds enclose the compute bounds, and the actual
points that are touched sit in between the two. The loop bounds must ensure that all of the points in the
compute bounds are actually computed. To ensure correctness, if a point being computed lies in the compute
bounds, then all of the accesses on the right hand side of the assignment must be in the compute bounds of
their funcs. In short, what happens outside the compute bounds stays outside the compute bounds. This gap
can then be exploited by overcompute strategies during scheduling (§8.2).

The algorithm for extracting the bounds constraint for a program P ∈ Tgt? is shown in Figure 10. The
extraction traverses the AST of the program and translates every statement into a logical condition with
holes for which any satisfying completion implies the following.

Definition 7.1 (Bounds sets). We define a few functions for the purpose of defining the bounds extraction
in Figure 10.

Mem(f)i =
[
?mem,min
f,xi

, ?mem,len
f,xi

)
Cpu(f)k =

[
?cpu,min
f,xk

, ?cpu,lenf,xk

)
Lastly, Loop(f, i, j)k refers to the set of values dimension k takes on in the write side of the assignment in
stage j of specialization i of func f . This is defined in terms of the expression appearing in that position.

Definition 7.2 (Bounds oracle query). Let P ∈ Alg be an algorithm and let T ∈ Sched be a schedule for it
so S = S(T,L(P )). Then a query to the bounds oracle O consists of (1) the predicate p = B(S) and (2) the
lexical scopes K(S) allowed for every hole in p.

The oracle responds with some list of hole substitutions V ∈ O(p,K) that is compatible with S. Hence,
the set BI(P ) = {S[V ] | V ∈ O(B(S),K(S))}.

Here we investigate the structure of solutions to bounds inference.

Definition 7.3 (Narrowing program). Let P1, P2 ∈ BI(S) where S is a program scheduled from some
algorithm. We say that P1 ≤ P2 iff for all inputs z, the every execution of any compute, allocate, or for
statement in P1(z) has a corresponding execution in P2(z) and the bounds I1 for P1(z) are contained in
the bounds I2 for P2(z). (Here “corresponding” means that the two statements are at the same lexical site,
executing with identical environments Σ.)
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Lemma 7.4 (Narrowing executions match). Let P1 ≤ P2 as above. Then after the execution of corresponding
compute statements for some func f on intervals I1 and I2, the contents of the buffer for f agree on I1.

Proof. Let SI(P, z) denote the set of assignment executions in P (z). By definition, SI(P1, z) ⊆ SI(P2, z).
Let SI(P2, z)|I1 be the set of assignment executions within the compute statement of P2(z) which write to
a point of f in I1. Then SI(P1, z) ⊇ SI(P2, z)|I1 (by the CPU ⊆ Loop constraint of B). Thus there are no
writes to values in I1 in P2 that do not also occur in P1. Furthermore, all of these computed values depend
only on ther values computed in both programs. This follows from the assignment rule of B.

Lemma 7.5 (Memory safety). All bounds query results P ′ ∈ BI(S) for S any scheduled program, are memory
safe.

Proof. First recall that by lemma 6.2, every access to a func f is dominated by the allocate statement for f .
The rule for accesses in B explicitly requires that every referenced point is contained in the allocation bounds
(Mem) of the associated func. Thus P ′ will always satisfy the InBounds condition.

Note that if an expression appearing in an access is either potentially erroring or unbounded then there is
no possible bounds query result. In this case, the lemma 7.5 holds vacuously. We will now begin to prove
that lowering is confluent with the algorithm.

Lemma 7.6 (Compute bounds confluent). Let P ∈ Alg and P ′ ∈ BI(L(P )). Let f be a func in P . Assume
that all of the points in compute bounds of funcs g preceding f are confluent with P . Then the compute
statement for f computes values confluent with P .

Proof. Recall from the definition of B that each of f ’s stages’ loop bounds cover the compute bounds. Lemma
6.2 ensures that the func is realized before it is read.

Thus, if f consists of only a pure stage, we are done because the static lack of self-reference and reduction
dimensions makes each assignment in that stage completely independent of every other. The assignment
exactly matches the algorithm’s expressions and only reads from compute bounds by assumption.

On the other hand, if f has n stages and P ′ satisfies the claim, we argue that adding another stage s to f
preserves the claim. The definition of B ensures that every access in s is included in the allocation bounds
and assignments writing to point in the compute bounds read only within the compute bounds of other funcs
and f . By the induction hypothesis on stages, the values in the compute bounds of the buffer for f (and all
other funcs) are correct just before s runs.

Recall the structure of the loop nest for s. The outermost for loops correspond to pure dimensions and
range over bounds holes, which are constrained to cover the compute bounds of f . The innermost for loops
implement any reduction domain in the stage and have bounds supplied by the algorithm. If the stage is
guarded by a condition, it is included within the innermost for loop. Finally, a single assignment statement
corresponding to the update rule for the stage is the innermost statement.

We need to show that the code produced by lowering for s will compute confluent values for f . Consider
a point p in the compute bounds of f after the stage runs. The stage s separates pure dimensions from
reduction dimensions of p. Let xp be the assignment to pure dimensions induced by p. Consider the definition
of s in the algorithm. It consists of a series of simple updates after unrolling the rdom all of which share values
xp in common. Now, observe the iteration of the pure loops of s in the target language which coincide with
xp. This iteration is guaranteed to occur by the covering of the compute bounds by the loop bounds. The
content of this iteration is a sequence of assignments corresponding to the unrolled rdom. Lastly, any other
x′p 6= xp touches no memory in common with this iteration because of syntactic separation (def. 4.2).

Lemma 7.7 (Lowering is sound). S = L(P ) is confluent with P for all P ∈ Alg.

Proof. Let P ′ ∈ BI(S) and let z be any input. If P (z) contains an error, then we are done. Since lowering
does not create any assertion statements, failing one is not possible. All lowered programs trivially respect
dominance. Finally the argument in lemma 7.6 applies inductively over the lowered code.

The proof of correctness for the remainder of of theorem 3.5 will follow by induction from the proofs for
each scheduling directive in section 8.
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T ::= ε | s;T schedule program
` ::= 〈f, i, j, v〉 loop names (§6.1)
τ ::= serial | parallel traversal orders

s ::= specialize(f, e1, . . . , en) Specialization (§8.1)

| split(`, xo, xi, e) Loops (§8.2)
| fuse(`, x)
| swap(`)
| traverse(`, τ)

| compute-at(f, `g) Compute (§8.3)

| store-at(f, `g) Storage (§8.4)

| bound(f, x, emin, elen) Bounds (§8.5)

| bound-extent(f, x, elen)
| align-bounds(f, x, em, er)

Figure 11: The Halide scheduling language. The s definition is grouped by phase of scheduling (presented in
order).

8 Scheduling Language

We formalize scheduling by directly mutating programs in Tgt?. Because some directives — like split — are
incompatible with other directives, we assume that all schedules are ordered into phases5 as indicated in
Figure 11. Scheduling directives use loop names as given by lemma 6.1 to determine their targets.

In Figure 12 we show the IR transformations for each scheduling directive. In each subsequent section, we
describe each phase, enumerate its restrictions, and prove its safety.

8.1 Specialization Phase

Certain scheduling decisions may be more or less efficient, depending on program parameters. For instance,
simpler schedules tend to work better for small output sizes.

This phase addresses this issue by duplicating an existing func’s code for each of n conditions. These
specializations introduce labels that allow later scheduling directives to operate differently on each one. In
our formal system, schedules may give at most one specialization directive per func.

Lemma 8.1 (Unique active specialization). Given algorithm P ∈ Alg and a schedule T ∈ Sched, let
P ′ ∈ BI(S(T,L(P ))). Then for any input z, P ′(z) will evaluate exactly one specialization for any given func
f .

Proof. If f has no specializations, then its only compute statement is considered the default specialization.
Valid schedules have at most one specialization directive per func, so there is one block of if-then statements
for each func, each containing a compute statement for f . Since the conditions of those branches are startup
expressions, the input z determines which one will be taken every time the block is encountered.

Theorem 8.2 (Specialization is sound). Let P ∈ Alg be a valid algorithm and let Si ∈ Tgt? be the result of
lowering P and applying scheduling directives up through this phase. Let s be a scheduling directive in this
phase, then Si+1 = S(s, Si) is confluent with P .

Proof. Let z be a valid input for P , P ′i ∈ BI(Si), and P ′i+1 ∈ BI(Si+1). If P (z) contains an error, we are
done; and no assertions are present until the bounds phase; so we may assume P 'z P

′
i By assumption, s is a

specialization of some func f . Now by lemma 8.1, exactly one branch of f is taken in any execution P ′i+1(z).
This preserves producer domination as required by lemma 6.2.

5the practical system handles this for users.
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compute f on I : s
specialize(f,e1,...,en)−−−−−−−−−−−−−−−−→

compute f on I :

if e1 then label z1 in s

else if e2 then label z2 in s

...

else label z0 in s

label f : s
. . .
label g :
. . .
label s0 :
. . .
forx · · · : s2

compute-at(f,〈g,x〉)−−−−−−−−−−−−−−−→
label g :
. . .
label s0 :
. . .
forx · · · : (label f : s; s2)

allocate f(. . . )
. . .
label g :
. . .
label s0 :
. . .
forx · · · : s2

store-at(f,〈g,x〉)−−−−−−−−−−−−→
label g :
. . .
label s0 :
. . .
forx · · · : (allocate f(. . . ); s2)

forx in (emin, elen)do s
split(`,xo,xi,e

fac)−−−−−−−−−−−−−→
forxo in (0,

⌈
elen/efac

⌉
)do

forxi in (0, efac)do
push-down(ϕ, s)

where ϕ is

ϕGuard(s) =

{
letx = emin + xi + efac · xo in
if x < emin + elen do s

or

ϕRound(s) = letx = emin + xi + efac · xo in s
or

ϕShift(s) =


letx = emin + xi

+ min(efac · xo,
max(0, elen − efac))

in s

forx1 in (emin
1 , elen1 )do

forx2 in (emin
2 , elen2 )do s

fuse(`,y)−−−−−−→
for y in (0, elen1 elen2 )do

push-down(ϕ, s)

where

ϕ(s) =

{
letx1 = emin

1 + by/elen2 c in
letx2 = emin

2 + y%elen2 in s

forx in bdo
forx′ in b′ do s

swap(`)−−−−−−→
forx′ in b′ do

forx in bdo s

forx in bdo s
traverse(`,τ)−−−−−−−−−→

forτ x in bdo s

compute f on
(
. . . , ?cpu,min

f,x , ?cpu,len
f,x , . . .

)
: s

bound(f,x,emin,elen)−−−−−−−−−−−−−−−→
compute f on (. . . ) :

assert ?cpu,min
f,x == emin∧?cpu,len

f,x == elen

s

compute f on
(
. . . , ?cpu,len

f,x , . . .
)

: s

bound-extent(f,x,elen)−−−−−−−−−−−−−−−−−→
compute f on (. . . ) :

assert ?cpu,len
f,x == elen

s

compute f on
(
. . . , ?cpu,min

f,x , ?cpu,len
f,x , . . .

)
: s

align-bounds(f,x,em,er)−−−−−−−−−−−−−−−−−−→
compute f on (. . . ) :

assert ?cpu,min
f,x % em == er

assert ?cpu,len
f,x % em == 0

s

push-down(ϕ, for v in I do s) = for v in I dopush-down(ϕ, s)
push-down(ϕ, let v = e in s) = (let v = e inpush-down(ϕ, s))

push-down(ϕ, s) = ϕ(s)

Figure 12: Scheduling directives over the IR
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8.2 Loops Phase

Halide provides several standard loop transformations to change the order of computations. A loop can be
split into two nested loops, two nested loops can be fused into a single loop, two nested loops may be swapped,
and loops may be traversed in parallel.

Some loop directives apply only to pure loops, a manifestation of pure dimensions in the target IR.

Definition 8.3 (Pure loop). Let v be the loop variable for some for loop in a program P ∈ Tgt?. We say v
and its associated loop are pure if v is identically one of the pure dimensions of its associated func, if it is the
result of splitting a pure loop, or if it is the result of fusing two pure loops together. We letter the iteration
variable of pure loops x. All other loops are reduction loops, lettered r.

We may split a loop l by e into an outer loop iterated by xo and inner loop by xi, which runs over the
split factor e. This division may produce a remainder, which is handled in the practical system by choice of
a tail strategy : (1) guarding the body with an if ; (2) overcomputation of the func (affecting bounds); (3)
shifting the last loop iteration inwards, causing recomputation. The latter two are only allowed on pure
stages.

Two nested loops can be fused together into a single loop whose extent is the product of the original
extents, provided both loops are pure or both are reduction loops. This is approximately an inverse to the
split directive, and is useful for controlling the granularity of parallelism. Nested loops can be swapped as
long as the swap does not reorder two loops over reduction variables 6. Finally, each pure loop can also be
traversed in either serial or parallel order 7.

All variable names introduced by directives must be new, unique and non-conflicting. Now we can argue
that programs are safely transformed by these directives.

Theorem 8.4 (Loop phase is sound). Let P ∈ Alg be a valid algorithm and let Si ∈ Tgt? be the result of
lowering P and applying scheduling directives up through this phase. Let s be a scheduling directive in this
phase, then Si+1 = S(s, Si) is confluent with P .

Proof. Theorem 8.2 ensures that Si is confluent as long as we have not yet reached this phase. So we may
inductively assume confluence before issuing any such s. As before, s does not introduce assertions, so we
need only assess output equivalence. Each directive s operates locally on loops in a single stage, so therefore
we need only show that the transformation of this stage is observationally equivalent; i.e. the state of the
buffers before and after the stage is the same within the compute bounds.

Suppose s = split(〈. . . , v〉, vo, vi, efac). We may check that the values v ranges over are unchanged;
this means that B(Si) is logically equivalent to B(Si+1). Since the scopes of holes have also not changed
(K(Si) = K(Si+1)), the sets of bounds query results are identical. Thus there is a bijection between programs
P ′i ∈ BI(Si) and P ′i+1 ∈ BI(Si+1), s.t. corresponding holes have been filled with identical expressions. These
two programs execute the same statement instances in the same order; therefore the effect on buffers is
identical.

The argument for the fuse directive proceeds analogously, as do the arguments for the overcomputation
and inward-shifting split strategies that apply only to single-stage funcs, which are adjusted for the expanding
compute bounds and identically recomputed points, respectively.

For swap and traverse, consider the loop nest for the stage of f . Analogously to the proof of lemma 7.6,
syntactic separation ensures that distinct iterations of pure loops access f at disjoint sets of points. Since
split and fuse preserve the sets and order of accesses as they introduce new loops, two writes agree on their
pure dimensions iff the pure loop variable values agree.

But this means that two assignments touch the same memory of f only if the values of the pure loops are
the same. Since traverse paralellizes over a single pure loop, no two tasks touch the same memory. And
swap interchanges two pure loops, so the writes which do touch memory in common are not interchanged
with respect to one another.

6The practical Halide system allows swaps between reduction variables predicated on a successful commutativity check [35].
7The practical Halide system also adds unrolled, and vectorized traversal orders, but these are not formalized here.
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8.3 Compute Phase

To narrow the scope of computation, the compute statement for a func f may be moved from the top level
to just inside any loop as long as the compute statement continues to dominate all external accesses to f .

The closer a producer is computed to its consumer, the less of the producer needs to be computed
per realization. The expectation is that bounds inference will use the additional flexibility granted by the
additional loop iteration information to derive tighter bounds. This directive therefore controls how much of
a Func to compute when it is realized.

Lemma 8.5 (Compute phase is sound). Let P ∈ Alg be a valid algorithm and let Si ∈ Tgt? be the result of
lowering P and applying scheduling directives up through this phase. Let s be a compute-at directive moving
the func f to some location `g. Then Si+1 = S(s, Si) is confluent with P .

Proof. Let P ′i ∈ BI(Si) and let {P ′′i } be the set of programs resulting from applying s to P ′i . Let P ′i+1 ∈
BI(Si+1). First observe that any P ′′i computes the same values as P ′i because the compute statement for f
computes all of the points ever needed in P ′′i and dominates all of its consumer funcs. This also implies that
P ′′i ∈ BI(Si+1).

Now suppose P ′i+1 is not one of the P ′′i . Then for each z, if P (z) does not contain an error, then there
is some P ′′i ≥ P ′i+1 (see definition 7.3). By lemma 7.4, P ′i+1 computes the exact same values of f on the
narrower range, which bounds inference guarantees is sufficient for confluence.

8.4 Storage Phase

Each Func is tied to a particular piece of memory when it is realized. Halide offers some control over how
much memory a func occupies during the run of a pipeline. The store-at directive (analogous to compute-at
above) moves the allocation statement to just inside any loop such that the allocation still dominates all
accesses of the func it allocates.

Bounds inference is then free to choose a smaller, more precise size for the allocation based on the code
that follows, and the particular values of the variables of the loops that enclose it.

Lemma 8.6. Let P ∈ Alg be a valid algorithm and let Si ∈ Tgt? be the result of lowering P and applying
scheduling directives up through this phase. Let s be a store-at directive, then Si+1 = S(s, Si) is confluent
with P .

Proof. Lemma 7.5 required only dominance of the allocate statement over all accesses to the associated func
for correctness. This is preserved by definition.

8.5 Bounds Phase

Additional domain knowledge might allow a user to derive superior bounds functions than those inferred.
Halide provides directives to give hints to the bounds inference oracle just before querying it.

The first two directives, bound and bound-extent, assert equality of bounds holes to provided startup
expressions. The third directive, align-bounds, adds assertions that constrain the divisibility and position of
the window. The minimum is constrained to have a particular remainder modulo a factor which is declared
to divide the extent. These assertions affect the bounds inference query such that the inferred computation
window will expand to meet these requirements.

Theorem 8.7 (Bounds phase is sound). Let P ∈ Alg be a valid algorithm and let Si ∈ Tgt? be the result of
lowering P and applying scheduling directives up through this phase. Let s be a scheduling directive in this
phase, then Si+1 = S(s, Si) is confluent with P .

Proof. The directives in this phase only mutate programs by adding assertions to them, the only side effect
of which is to transition to an error state. Thus in any non-erroring execution of any Pi ∈ BI(Si), there is
some Pi ∈ BI(Si) whose behavior exactly matches Pi+1.
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8.6 Practical directives

Halide provides many more scheduling directives that are out of scope for this paper. It has directives
for assigning loops to coprocessors like GPUs and the Hexagon DSP; and directives for prefetching and
memoization. Some of the most esoteric directives (compute-with and async) may require more substantial
modification or extension of these semantics.

9 Related Work

The computational and scheduling models of Halide have evolved through a series of extensions and gen-
eralizations [32, 30, 31, 35]. Halide builds on the idea of explicit control over compiler transformations
developed earlier in many script- or pragma-based compiler tools in HPC [15, 17, 42, 20, 9], and the definition
of parametric spaces of optimizations in SPIRAL [18]. A growing family of high performance DSLs since
the introduction of Halide have directly adopted the concept of a programmer-visible scheduling language
[3, 10, 38, 29, 43, 39, 25]. The Polyhedral loop optimization community has absorbed and extended these
ideas in its own context [40, 41, 1, 2]. None of these languages and systems, however, have been described and
analyzed formally. The recent TeML language is defined in a formal style, but its transformation language
is not correctness-preserving, and it does not make safety guarantees or suggest how such a metatheory
might be formulated [36]. Stronger equivalence properties have been proven in recent work on type-based
decompositions into algorithmic skeletons [5].

Halide’s algorithm language is closely related to both array languages [26, 8, 7, 23, 6], and image processing
DSLs [24, 34]. Its computational model is most closely related to that of the lazy functional image language
Pan [16]. Bounds inference is related to array shape analyses and type systems [27, 28, 22]. Our treatment of
bounds inference here is formulated as a constraint-based program synthesis problem [19].

The correctness of many compiler transformations has been treated in the context of verified compilers
like CompCert [4, 37]. This goal, however, is inherently more ambitious than ours: we analyze the safety and
correctness of operators in a language designed (albeit informally) with roughly these goals in mind, while
optimizations in CompCert have to preserve every visible program property in the notoriously complex C
language.

10 Conclusion

This paper presents the first major step towards formalizing a real-world language with user-controlled
scheduling, covering most essential features of the practical Halide language. Some features are omitted for
simplicity, but would be interesting to consider in future work. Atomics, asynchronous producer-consumer
parallelism, and mapping to heterogeneous hardware all require a model of concurrency. We also omit some
important optimizations from the real system which apply after scheduling and bounds inference (sliding
window, storage folding). Finally, we do not model floating point. Defining correctness in floating point
computations is inherently difficult, and the real Halide system already makes “fast-math” assumptions
(effectively treating floats as reals) by default, which is common in its target domains.

We believe this work already provides a foundation to study this new class of languages with user-controlled
scheduling. One major question is how they could incorporate abstraction and module systems. Another
is whether alternative bounds inference algorithms, based on our program synthesis formulation, could be
useful in practice.

Practical impact

These formalization efforts have also already influenced Halide’s design, and found and fixed bugs where
actual and expected behavior differed in significant ways.

Negative rdom extents. During the course of research, the authors discovered the behavior for negative
rdom extents is not defined in the practical system [14]. By happenstance, negative-extent rdoms are treated
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as no-ops in simple cases designed to probe the behavior. However, there could be instances in the compiler
where a negative extent is treated as unsigned, which would silently lead to a very long loop.

At the time of writing, the implications of defining any particular behavior for negative-extent rdoms has
not been explored, so they are formalized here as errors.

Realizing outputs with rdoms. For efficiency, the practical Halide system allows a user to supply their
own output buffer, rather than allowing Halide to allocate the memory. These buffers are checked against the
inferred allocation bounds. However, this same system was used to implement the common interface that
requests only a compute window. This led to vexing errors on safe output windows [11].

But since adding an identity func after the original output would allow bounds inference to expand the
intermediate buffer and copy the requested window to the output, from the perspective of the user, identity
functions could be impure. This issue was fixed by extending the interface to match the expected behavior,
formalized here.

Arithmetic error semantics. In this paper, numerical operations report errors by returning special values,
rather than crashing the program. This is also the case for IEEE 754 floating point. However, it is not the
case for integer division on x86. Such errors include division by zero and multiplication of the most negative
(two’s complement) value by -1.

When split rounds up, it is assumed that the values between the compute and allocation bounds will not
affect the final output. However, one of the uninitialized values used in an integer computation in this gap
can cause a crash [13]. At the time of writing, fixes are being discussed.

Compute-with directive. Compute-with is a scheduling directive intended to zip together the loops of
independent funcs for the purpose of increasing parallelism. However, the implementation was only tested
on funcs with a single pure stage, despite an interface and an attempt to support fusion of update stages.
Consequently, scheduling is currently broken for programs using this feature.

We have identified a potential fix that involves explicitly adding fused groups to the algorithm language
and topologically sorting them before lowering [12]. However, more work is needed to formalize the feature
and patch the compiler, while making any consequent adjustments to the semantics.
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Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 519–530, 2013.

[33] Jason Redgrave, Albert Meixner, Nathan Goulding-Hotta, Artem Vasilyev, and Ofer Shacham. Pixel
Visual Core: Google’s fully programmable image, vision, and AI processor for mobile devices. In 2018
IEEE Hot Chips 30 Symposium (HCS), Cupertino, CA, USA, August 19-21, 2018, pages 1–28, 2018.

[34] Michael A Shantzis. A model for efficient and flexible image computing. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pages 147–154. ACM, 1994.

[35] Patricia Suriana, Andrew Adams, and Shoaib Kamil. Parallel associative reductions in halide. In
Proceedings of the 2017 International Symposium on Code Generation and Optimization, CGO ’17, pages
281–291, Piscataway, NJ, USA, 2017. IEEE Press.

21



[36] Adilla Susungi, Norman A. Rink, Albert Cohen, Jerónimo Castrillón, and Claude Tadonki. Meta-
programming for cross-domain tensor optimizations. In Proceedings of the 17th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences, GPCE 2018, Boston,
MA, USA, November 5-6, 2018, pages 79–92, 2018.

[37] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation validators: A case study
on instruction scheduling optimizations. In Proceedings of the 35th ACM Symposium on Principles of
Programming Languages (POPL’08), pages 17–27. ACM Press, January 2008.

[38] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions, 2018.

[39] Anand Venkat, Tharindu Rusira, Raj Barik, Mary W. Hall, and Leonard Truong. SWIRL: high-
performance many-core CPU code generation for deep neural networks. IJHPCA, 33(6), 2019.

[40] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei Fukuda, Joris Hoeven,
Michael Joswig, and Nobuki Takayama, editors, Mathematical Software (ICMS’10), LNCS 6327, pages
299–302. Springer-Verlag, 2010.

[41] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. Schedule trees. In Fourth
International Workshop on Polyhedral Compilation Techniques, IMPACT 2014, jan 2014.

[42] Qing Yi, Keith Seymour, Haihang You, Richard W. Vuduc, and Daniel J. Quinlan. POET: parameterized
optimizations for empirical tuning. In 21st International Parallel and Distributed Processing Symposium
(IPDPS 2007), pages 1–8, 2007.

[43] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman P. Amaras-
inghe. Graphit: a high-performance graph DSL. PACMPL, 2(OOPSLA):121:1–121:30, 2018.

22


