Halide

Industrial experience, design retrospective, Alex Reinking
and future directions

Email:
User-Schedulable Languages Workshop 2025 GitHub: @alexreinking

Rotterdam, Netherlands Website: alexreinking.com

mailto:areinking@adobe.com

input_16(x, y) = cast<uintl6_t>(
repeat_edge(input) (x, y));

blur_x(x, vy)

result(x, vy)
(blur_x(x,
blur_x(x,
blur_x(x,

(input_16(x-1, y) +
input_16(x, y) +
input_l16(x+1, y))/3;

= cast<uint8_t>(
y-1) +
+

y
y+1))/3);

result.compute_root()
tile(x, y, xi, yi, 128, 24)
.parallel(y)
.vectorize(xi, 32);

blur_x.compute_at(result, yi)
.store_at(result, x)
.vectorize(x, 32);

input_16.compute_at(result, x)
.vectorize(x, 32);

https://docs.google.com/file/d/1zasVBJdOXggvHrnMZPxrpft-Pj5vpnfd/preview

Halide in industry

e Google
o Pixel phone cameras (2015+)
e Qualcomm
o Ships in the official Hexagon SDK with some proprietary improvements to HVX codegen.

e Adobe

o Implements 2500+ of Photoshop’s performance critical kernels.
o WebAssembly backend facilitated porting Photoshop to the web.

e Apple

o Contributed support for Apple Silicon, and there are Halide symbols in the system partition

Halide is both supported and constrained by industrial adoption.

What made Halide successful?

Technical reasons

e Good ideas and design
o The scheduling language is expressive and right for the domain
o Bounds inference keeps scheduling expressive
o Schedules promote portability, even to future hardware

e Practically good results

o Demonstrated large performance gains in non-trivial early applications
o Halide code is more maintainable than intrinsics-heavy C++ code.

What made Halide successful?

Social reasons

e Skunk-works style adoption
o Get hired at a company and deploy it there!

e Well-balanced growth
o We never got caught in a hype cycle.

e Symbiotic relationships with products
o As an engineer, you're rewarded for making products better.
o As aresearcher, your work needs to be aligned with that incentive.

e No direct competitors
o Halide wasn’t trying to be Yet Another Shader Language.

e MIT Licensing

o Allows contributors to move between companies. Facilitates university collaboration.

What is holding Halide back?

Dependencies are a blessing and a curse
o We spend a lot of cycles tracking rapid changes to LLVM’s API.
o | have personally spent a lot of time fixing our dependencies’ build systems.
Downstream inertia
o Evenif we find better schedules, projects with enough resources will often rewrite their code to
follow them rather than adopt a new tool.
Resources and headcount
o Manual maintenance burden: infrastructure, community support, onboarding
o No formal managing entity: limits funding, avoids entanglement
o Need more hands to implement new hardware backends.
Steep learning curve
o Halide’s programming model is still very unfamiliar, not taught in colleges.

Missing hardware specifications

Design & implementation: what worked?

e Cross-compiling
o Generating object files rather than source code eliminates toolchain differences.
e Term-rewriting for simplification/solving
o SMT solvers are powerful but slow. Need fast generated code and fast compile times.
e Fully replaceable runtime
o Users can bring their own thread pools, GPU memory managers, command buffers, etc.
e Embedding in C++/Python
o We get a lot of tooling “for free” (e.g. code completion, syntax highlighting, formatting)
o Easy meta programming from the host language
e Leaning into standard tooling

o Halide builds with CMake and we provide a CMake package for downstreams.
o Distribution on PyPl: pip install hal-ide
o Works for C++, too, thanks to manylinux!

Design & implementation: what didn’t?

e Algorithms and schedules aren’t perfectly separate
o In practice, the performance engineer has to adjust the algorithm to allow better scheduling
e Reductions are somewhat ad-hoc
o Update stages and reduction domains are confusing and sometimes require manual bounds
computation from the input shapes.
e Debugging is hard at all levels
o Error messages are limited because “line numbers” don’t really exist.
o Open problem: correlating compiler outputs to their inputs.
e Complicated build process
o Build the generator executable (host toolchain)

o (Cross-)compile a pipeline to produce an object file (on the host)
o Link the resulting object file to the target application (target toolchain)

Testing & Reliability — Engineering Practices

e Unit tests are helpful during development, but rarely fail later
e Don’tjust test valid programs — test failure modes too

e Fuzz testing is essential:

o Uncovers unexpected uses by definition

o Biased toward small programs means good reproducers

o Broad coverage reduces need for hand-written tests (but turn fuzz failures into fixed tests)
e Make fuzz failures reproducible across platforms

o Prefer deterministic RNGs (e.g., mt19937) with logged seeds

e Bad test infrastructure kills morale:
o Too many tests, slow tests, flaky tests = unhappy contributors

Testing & Reliability — Theoretical and Formal Challenges

e Formal verification can eliminate entire classes of bugs
o Butonly if the spec is right
e Verified components still benefit from fuzzing
o Fuzz finds issues outside the formal model
e Real-world users write "golden" tests
o Often opaque, fragile, and based on legacy behavior
o May compare output by checksum or float-equality
e Floating point fragility is unavoidable

o Thresholding doesn’t always work
o Deterministic mode helps, but isn't realistic

Future directions for Halide

e ML inference driving future work

o Especially important on edge devices.
o Torch Inductor has an experimental Halide backend

e New language features:
Caching (e.g. for KV caches)
Tiled storage

User-scheduled approximation
Code outlining / deduplication
Offline computation

e New hardware backends:

o Tensor Cores
o Custom accelerators

o O O O O

