
Halide
Industrial experience, design retrospective,
and future directions

User-Schedulable Languages Workshop 2025
Rotterdam, Netherlands

Alex Reinking

Email: areinking@adobe.com
GitHub: @alexreinking
Website: alexreinking.com

mailto:areinking@adobe.com

input_16(x, y) = cast<uint16_t>(
 repeat_edge(input)(x, y));

blur_x(x, y) = (input_16(x-1, y) +
 input_16(x, y) +
 input_16(x+1, y))/3;

result(x, y) = cast<uint8_t>(
 (blur_x(x, y-1) +
 blur_x(x, y) +
 blur_x(x, y+1))/3);

result.compute_root()
 .tile(x, y, xi, yi, 128, 24)
 .parallel(y)
 .vectorize(xi, 32);

blur_x.compute_at(result, yi)
 .store_at(result, x)
 .vectorize(x, 32);

input_16.compute_at(result, x)
 .vectorize(x, 32);

https://docs.google.com/file/d/1zasVBJdOXggvHrnMZPxrpft-Pj5vpnfd/preview

● Google
○ Pixel phone cameras (2015+)

● Qualcomm
○ Ships in the official Hexagon SDK with some proprietary improvements to HVX codegen.

● Adobe
○ Implements 2500+ of Photoshop’s performance critical kernels.
○ WebAssembly backend facilitated porting Photoshop to the web.

● Apple
○ Contributed support for Apple Silicon, and there are Halide symbols in the system partition

Halide is both supported and constrained by industrial adoption.

Halide in industry

What made Halide successful?

Technical reasons

● Good ideas and design
○ The scheduling language is expressive and right for the domain
○ Bounds inference keeps scheduling expressive
○ Schedules promote portability, even to future hardware

● Practically good results
○ Demonstrated large performance gains in non-trivial early applications
○ Halide code is more maintainable than intrinsics-heavy C++ code.

What made Halide successful?

Social reasons

● Skunk-works style adoption
○ Get hired at a company and deploy it there!

● Well-balanced growth
○ We never got caught in a hype cycle.

● Symbiotic relationships with products
○ As an engineer, you’re rewarded for making products better.
○ As a researcher, your work needs to be aligned with that incentive.

● No direct competitors
○ Halide wasn’t trying to be Yet Another Shader Language.

● MIT Licensing
○ Allows contributors to move between companies. Facilitates university collaboration.

What is holding Halide back?

● Dependencies are a blessing and a curse
○ We spend a lot of cycles tracking rapid changes to LLVM’s API.
○ I have personally spent a lot of time fixing our dependencies’ build systems.

● Downstream inertia
○ Even if we find better schedules, projects with enough resources will often rewrite their code to

follow them rather than adopt a new tool.

● Resources and headcount
○ Manual maintenance burden: infrastructure, community support, onboarding
○ No formal managing entity: limits funding, avoids entanglement
○ Need more hands to implement new hardware backends.

● Steep learning curve
○ Halide’s programming model is still very unfamiliar, not taught in colleges.

● Missing hardware specifications

Design & implementation: what worked?

● Cross-compiling
○ Generating object files rather than source code eliminates toolchain differences.

● Term-rewriting for simplification/solving
○ SMT solvers are powerful but slow. Need fast generated code and fast compile times.

● Fully replaceable runtime
○ Users can bring their own thread pools, GPU memory managers, command buffers, etc.

● Embedding in C++/Python
○ We get a lot of tooling “for free” (e.g. code completion, syntax highlighting, formatting)
○ Easy meta programming from the host language

● Leaning into standard tooling
○ Halide builds with CMake and we provide a CMake package for downstreams.
○ Distribution on PyPI: pip install halide
○ Works for C++, too, thanks to manylinux!

Design & implementation: what didn’t?

● Algorithms and schedules aren’t perfectly separate
○ In practice, the performance engineer has to adjust the algorithm to allow better scheduling

● Reductions are somewhat ad-hoc
○ Update stages and reduction domains are confusing and sometimes require manual bounds

computation from the input shapes.

● Debugging is hard at all levels
○ Error messages are limited because “line numbers” don’t really exist.
○ Open problem: correlating compiler outputs to their inputs.

● Complicated build process
○ Build the generator executable (host toolchain)
○ (Cross-)compile a pipeline to produce an object file (on the host)
○ Link the resulting object file to the target application (target toolchain)

● Unit tests are helpful during development, but rarely fail later
● Don’t just test valid programs — test failure modes too
● Fuzz testing is essential:

○ Uncovers unexpected uses by definition
○ Biased toward small programs means good reproducers
○ Broad coverage reduces need for hand-written tests (but turn fuzz failures into fixed tests)

● Make fuzz failures reproducible across platforms
○ Prefer deterministic RNGs (e.g., mt19937) with logged seeds

● Bad test infrastructure kills morale:
○ Too many tests, slow tests, flaky tests = unhappy contributors

Testing & Reliability — Engineering Practices

Testing & Reliability — Theoretical and Formal Challenges

● Formal verification can eliminate entire classes of bugs
○ But only if the spec is right

● Verified components still benefit from fuzzing
○ Fuzz finds issues outside the formal model

● Real-world users write "golden" tests
○ Often opaque, fragile, and based on legacy behavior
○ May compare output by checksum or float-equality

● Floating point fragility is unavoidable
○ Thresholding doesn’t always work
○ Deterministic mode helps, but isn't realistic

● ML inference driving future work
○ Especially important on edge devices.
○ Torch Inductor has an experimental Halide backend

● New language features:
○ Caching (e.g. for KV caches)
○ Tiled storage
○ User-scheduled approximation
○ Code outlining / deduplication
○ Offline computation

● New hardware backends:
○ Tensor Cores
○ Custom accelerators

Future directions for Halide

